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Correlated random walks with random hopping rates 

R Brak and R J Elliott 
Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 9 August 1989 

Abstract. A concentration c of particles undergo correlated random walks on a lattice. The 
random walks are constrained by only allowing the lattice sites to be singly occupied. This 
leads to the particles being ‘dynamically’ correlated. In addition to the dynamic correlations 
the hopping rates of the particles are disordered. The random hopping rates give rise to 
‘static’ correlations. The resultant model is a many-body problem with disorder. 

Of principal interest are the new correlations that arise between a disordered random 
walk and a correlated random walk (CRW) and the effect these correlations have on the self- 
diffusion constant. The CRW is represented by a non-linear master equation from which the 
diffusion constant isobtained by meansof classical many-body Green functions. The dynamic 
correlations are represented by a two-particle Green function. The disorder is studied by 
means of the bond coherent potential approximation (BCPA). The disorder gives rise to a 
vertex correction to the two-particle Green function. The vertex correction is obtained by 
using the BCPA. 

1. Introduction 

The correlated random walk (CRW) problem has been studied as amodel of the statistical 
effects of high densities of ions on the ionic diffusivity of superionic conductors. We are 
concerned with the effects of disorder, in particular random hopping rates, on the 
CRW diffusion constant. Random hopping rates are expected to occur in glassy ionic 
conductors (Brak and Elliott 1989) which are of considerable technological importance. 

A review of the early work on CRWS may be found in LeClaire and Lidiard (1956), 
more recent results were obtained by Sankey and Fedders (1980) (see this paper for 
earlier references) who used diagrammatic methods to obtain the self-diffusion response 
function. Another interesting approach has been used by Nakazato and Kitahara (1980). 
An important series of papers (Tahir-Kheli and Elliott 1983, Tahir-Kheli 1983a, b, c, 
Holdsworth et a1 1986) beginning with the paper by Tahir-Kheli and Elliott (1983) (TKE) 
used Green function techniques to obtain the diffusion response function for a tracer 
particle which had a hopping rate which was different to the background particles. The 
other papers in the series generalised the method to multicomponent systems, to systems 
with two sublattices, and to the case where the background particles are stationary. 
Monte Carlo simulations of c ~ w s  (Richards 1977, Kehr et a1 1980, Murch and Rothman 
1981, Kutner et al1982, Murch 1984 and Tahir-Kheli et af 1986) are a convenient test of 
the, unfortunately necessary, approximations made in the various calculations. A more 
recent review is given by Allnatt and Lidiard (1987). 

0953-8984/89/5110299 + 21 $02.50 @ 1989 IOP Publishing Ltd 10299 
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We consider the CRW model in a little more detail. In its simplest form the model 
consists of a concentration c of particles hopping between nearest-neighbour sites of a 
lattice. However the random walk motion of each particle is constrained in that two 
particles are not allowed to occupy a lattice site at the same time. Thus a particle can 
only hop onto a site if that site is vacant. This gives rise to a ‘blocking’ effect on the 
motion of the particles. In order to determine the diffusion constant of a particle one of 
the particles, the ‘tracer’ particle, must be picked out and its motion followed in the 
remaining ‘background’ particles. If the tracer has the same hopping rate as the back- 
ground particles then the diffusion constant is the self-diffusion constant. However, it is 
a feature of the TKE method that the tracer particle can have a different hopping rate to 
the background particles as may be the case in some experiments where the tracer 
particles may be different isotopes. 

The single occupancy constraint can have a marked effect on the tracer diffusion 
constant. The simplest approximation (MFA) is to assume that the only effect of the 
background particles is to reduce the probability of the tracer jumping onto a site by the 
vacancy concentration U = 1 - c. This modifies the tracer diffusion constant by the 
factor U .  However, this only takes into account the ‘local’ effect of the background 
particles, the diffusion constant depends on the entire path of the tracer. This can be 
seen by the following argument (LeClaire and Lidiard 1956). At any time step the tracer 
can only hop onto a vacant nearest-neighbour site. Let ai be the (stochastic) nearest- 
neighbour vector taken by the tracer on the ith step t, assuming the tracer started at 
some initial site. Then after n steps the net displacement of the tracer is X = 2?= ai  and 
hence the diffusion constant, which is defined by lim,,,(p)p/2n, is given by 

which is generally written in the form 

D = Dofo 
where Do = lim,,-,=(Zi ~ : ) ~ / 2 n  and the ‘correlation factor’ f o  is the remaining factor in 
(1.1). Theaverage(. . ,),usestheprobabilityofeachn-steppathoccurringi.e. sumover 
all n-step paths, multiplied by the probability of the path occurring. Note that Do just 
depends on products of ‘local’ steps and, in the absence of disorder, is given by 

Do = U U ~ J ~  (1.3) 
where JA is the tracer hopping rate. This is the MFA mentioned above. We shall assume 
that the hopping rate is given by the Arrhenius form 

where p is the inverse temperature and E the height of the energy barrier the particle 
has to jump over. Equation (1.1) clearly shows that the MFA must be modified by the 
correlation factor, which (1.1) shows depends on the average of steps at two different 
times i.e. aiaj)p. It will be seen below that in the Green function formalism Do is 
always given by the one-particle Green function whilst the correlation factor is related 
to a non-interacting of ‘free’ two-particle Green function. 

In the presence of disorder and for a particular configuration of bonds the tracer may 
or may not be able to diffuse depending on the particular values of the nearest-neighbour 

J A  = QAe-PE (1.4) 
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hopping rates. However, on average the tracers motion is diffusive, although the dif- 
fusion constant may be zero or anomalous. It is the average diffusion constant that we 
are concerned with. For the CRW with disorder the average diffusion constant retains 
the sameform as (1.2) with Do replaced by bo andf, replaced by the average correlation 
factoryo. The argument is the same as that leading to (1.1) except that the probability 
of a given path occurring, for a given bond configuration, depends on the particular 
sequence of hopping rates encountered on each step of the walk. This only changes the 
averaging procedure and not the form of (1.2). 

The diffusion constant is obtained from the continuum limit of the CRW. As shown 
in 0 2 we use a master equation to represent the CRW. The master equation is then used 
to obtain equations of motion for various moments of the stochastic variables. The 
equations of motion of the moments, when supplemented with initial conditions, give 
rise to an inhomogeneous term and thus the moments are classical Green functions. 
These equations of motion of the various moments are coupled to equations of motion 
of higher order moments. This hierarchy of equations is characteristic of a many-body 
problem. If the same decoupling approximation Of TKE is used a closed set of equations 
is obtained which may be solved and the diffusion constant extracted. 

In the presence of disorder these equations of motion are averaged over the disorder 
to obtain an equation of motion for the average Green function from which the average 
diffusion constant may be extracted. The disorder average cannot be done exactly and 
must be approximated. The approximation we use is the coherent potential approxi- 
mation (Elliott et a l l 9 7 4 )  as applied to bond disorder (BCPA). This is a self-consistent 
effective medium approximation and is discussed in detail in § 3. 

The CRW in a disordered medium is essentia1ly:a problem of correlations. The CRW 
in a non-disordered medium has correlations whhh arise from the blocking effect of 
the particles. We will refer to these correlations as ‘dynamic’ correlations. It is these 
correlations which are approximated by the TKE decoupling scheme. If we consider a 
‘simple’ random walk (i.e. only one particle performing a random walk in an empty 
lattice), then when disorder is added to the simple random walk additional correlations 
arise when averaging over the disorder. It is these correlations that are approximated 
by the BCPA. We will refer to the disorder correlations as ‘static’ correlations. When 
disorder is added to the CRW new correlations arise. There are new static correlations 
which arise when averaging the two-particle Green function used to obtain fo. These 
two-particle static correlations give rise to a ‘vertex’ function which is obtained by using 
the BCPA in § 4. There are additional correlations which arise between the particle 
interactions and the disorder averaging. These static-dynamic correlations are more 
complicated than the two-particle static correlations. As an initial study we neglect these 
correlations. 

The additional complexity of the static-dynamic correlations has its origin in the 
nature of the mathematical representation of the problem. There is a fundamental 
difference in the way the effect of disorder is represented and the way the particle 
interactions are represented. The interactions between the particles manifest themselves 
in the coupling of differential equations. This is the analogue of the Zubarov method in 
many-body quantum mechanics. The differential equations are solved by decoupling 
approximations. By contrast, in the simple random walk, the disorder manifests itself 
through an implicit integral equation for the Green function. The integral equation is 
then solved by iteration, leading to a Dyson’s type equation. This is analogous to a path 
integral or field theory method, which is characterised by Feynman diagrams. A problem 
then arises when the CRW and the disorder are combined. In order to solve the problem 
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it seems necessary to use only one of the two types of representation. As the disorder 
cannot be expressed in differential form, it is necessary to use the integral representation. 
This presents little problem for the one-particle diffusion constant 6, and, as is seen in 
3 5 ,  it is also possible to express thefree two-particle Green in a form convenient for the 
integral representation required by the disorder. This enables the effect of the new two- 
particle static correlation to be obtained. However, to go further, it appears to be 
necessary to reformulate the CRW in an integral form. We do not consider this problem 
and thus neglect the static-dynamic correlations. Unfortunately an explicit expression 
cannot be obtained for the average of the two-particle Green function and some numeri- 
cal integration has to be done to determinefo. The numerical work is discussed in 3 6. 

We only consider two types of hopping rate probability distribution, however the 
calculation is easily modified for different distributions. The first distribution considered 
is the percolation or binary distribution, where the hopping rate is 0 with probabilityp 
and some value J with probability 1 -p .  The second distribution considered is the 
uniform barrier height distribution. Here the height of the energy barrier Eis considered 
to be random (with uniform distribution). The distribution of barrier heights in turn 
induces a distribution of hopping rates through (1.4). 

2. Equations of motion 

When including disorder in the CRW it is more convenient to reformulate the CRW in 
terms of a master equation and use the Laplace transform in place of the Fourier 
transform (in time) used by TKE. The details of the master equation and results that will 
be needed below may be found in Brak (1989) .  We briefly outline the method principally 
to establish the notation and reduce the necessity of constant referral to TKE. Let the 
concentration of the background particles be c. Then the state of the system at any 
particular time is given by the stochastic vector 

p n = { p l , P 2 , * ‘ .  , P N , n l , n 2 , . . .  , n N }  (2 .1)  
where 

1 if the tracer particle occupies site j ;  
Pj  = [ 0 otherwise 

and 

1 

0 otherwise. 

if a background particle occupies site j ,  
nj = { 

(2 .2a)  

(2 .2b)  

and N is the size of the lattice. Let the single tracer particle hop with rate J A  and the 
background particles hop with rate JB. The master equation is an equation of motion for 
the conditional probability P ( p n ,  t )  where P ( p n ;  f) is the probability of the system being 
in the state p n  at time t ,  given that it was in some initial state at time t = 0. The master 
equation is 

a 
- P ( p n ;  t)  = (W, (pn+p’n’ )P(p ’n’ ;  t )  - W,(p’n’+pn)P(pn;  t ) )  
at p’n’ j 
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where X:p ,n ,  is a sum over all statesp’n’ and 2, is a sum over all lattice sites. The transition 
rate is given by 

W,(pn+-p’n’) = E (J*P;+a(1 -Pi -n;)8,,.,/8,,+a p , + a 6 n , ’ n , 6 n , + n  n , to  
a 

- - 
+JBnn;+a(l -Pi -n; ) S P , . P / ~ P , + a . P , + a ~ n , . ” , ~ n , + a . n , t o  ) 

where a,,,,; is one if p ,  equals p ;  and zero otherwise, 8p,,p, = 1 - 6,,,,, and ZQ is a sum 
over nearest-neighbour lattice vectors. 

As shown explicitly in Brak (1989) the diffusion constant is the coefficient of k2 in 
the expansion of the characteristic function 

Gk(t) = exp(-ikl)(p/) .  (2.5) 
I 

Here averages ( .  . . )  are taken using the conditional probability distribution P ( p n ,  t )  
and in addition averaging over all initial configurations of background particles with the 
tracer fixed on site g. If the Laplace transform of Gk(l), 

Gk(S) = lox exp( -st)Gk(t) d t  

can be obtained then the diffusion constant in, is given by 

I/D = Iim lim k2Gk(s).  
k-0 s-0 

Thus we see it is not necessary to solve (2.3) completely but only to find (p,). Using 
the master equation it can be shown that 

where U/ = ni - c has been used. Equation (2.8) is not closed and requires averages of 
the form ( p p , ) .  Once again using the master equation as well as the decoupling scheme 
of TKE it can be shown that 

a 
- ( ( P I U , )  a t  = ( v J A ( p I + u U ,  - P I U , )  + JB(PIU,+a -pjU,))(l  - & I , , )  

Q 

- 2 C J * ( P I U / + a  - P / + a U /  + U ( P I + a  - P” 

+ ( JA( (u -c )p IU,  +cp,UI+ucp/)+JB(pIu, +cpI))6(/.,).  (2.9) 

U 

where U = 1 - c and a(/,,) is one if 1 a n d j  are nearest neighbours and zero otherwise. Let 
the Laplace transform of ( p p , )  be denoted by 

G::i(s) = Iox exp(-st)(p,u,) dt .  (2.10) 

Note, for notational convenience only, subscripts have been used to denote the tracer 
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labels and superscripts used to label the background 'particle'. The Laplace transform 
of equations (2.8) and (2.9) then give 

and 
j + a , g  - Gj.g ca/.gaj.g +x [UJA(G:$a,g - Gj:i) +JB(c / ,g  / , g ) l ( 1 -  a/, j> sG1.g - - 

/.g - 
a 

- C J ~ [ G ; ~ - ~  - ~ ' g  /+a.g + U(G/+a.g - G/,g)la/.j 
a 

+ { J A [ ( u - c ) G $ : ~  + C G ~ : :  f ~ c C / , , ] + J g ( G $ : i  + ~ G / , ~ ) } a ( / , j ) .  
The average of the background variable uj satisfies an equation of motion 

(2. l l b )  

H1.g = -ca.  1.g +JB 2 (Hj+a3g -Hi.g) + J ,  (Gi$a.g - G{lc,"'g) (2.12) 
a a 

where 

Hj.g(s) = exp( -st)(uj) dt. (2.13) 

Despite there being more than one background particle it can be shown (Brak 1989) 
that Hj.g can be interpreted as representing a single 'hole' undergoing a correlated 
random walk. Equations (2.11a) and (2.12) both have inhomogeneous terms arising 
from the initial conditions ( p / ) ( t  = 0) = and (uj(t = 0) = -ca,,,and thus GI:, and Hjsg 
are classical one-particle Green functions. Similarly G!;: is a classical two-particle Green 
function. 

Equations (2.11a, b)  are the same results obtained by TKE. They find that the 
correlation factor for cubic lattices is given by 

(2.14) 

I 

fo = [I - ~ C J B  Cos e / ( U J ,  $. J B ) ( ~  -k cos e)] - '  
where for the case of the simple cubic lattice 

Cos e = ( U J A  + J B ) ( P O ( O ;  2a) - P ~ ( o ;  01) 
and 

where 

(2.15) 

(2.16) 

(2.17) 

The sum over the wavevector A in (2.16) is over the Brillouin zone of the simple cubic 
lattice. 

3. One-particle BCPA 

Previous methods (Elliott and Pepper 1973, Chakrabarti eta1 1982, Kanehisa and Elliott 
1987, Webman 1981, Odagaki and Lax 1981) of implementing the BCPA using one- 
particle Green function methods do not conveniently generalise to the two-particle case. 
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Hence an alternative formulation of the BCPA has been developed which can be used for 
the two-particle Green function. We present the method for the simple random walk 
(i.e. only one particle on the lattice) with disordered bonds. The equation of motion is 
given by (2.11a) but without the two-particle terms. Let the hopping rate of the particle 
be J. In the presence of random hopping rates (or disordered bonds) the equation for a 
given configuration of bonds can be written in the form 

where ZY is a sum over all bonds of the lattice, d ,  and d ;  are the two sites adjacent to the 
y bond. Note, the hopping rate is made up of two components, J the non-random 
hopping rate representing an unperturbed system and K(Y) a random hopping rate. Thus, 
for a given bond configuration, the hopping rate of the bond y is J + K(Y). If K(y) is non- 
zero then the bond y will be referred to as a 'defect' bond. In terms of the non-random 
system whose Green function G/,, is given explicitly by 

equation (3 .1)  can be written in the form 

m.n 

where Wm,n is the disorder matrix 

(3 .3)  

(3.4) 

The above Green functions are indexed by the sites of the lattice. We now change to 
bond indexed Green functions. This is done by partitioning the sites of the lattice into 
disjoint pairs. The sites of any pair must be nearest neighbours. Each pair, e.g. {II, 1 2 } ,  
now uniquely labels a bond y = {11, 12}, and no two labelled bonds have any sites in 
common. Bond indexes will be denoted by Greek characters. As the bond partitioning 
is disjoint any site indexed matrix is partitioned into disjoint 2 X 2 submatrices. Each 
submatrix is uniquely labelled by a pair of bond indexes. Because the bond submatrices 
are disjoint the equation of motion for the 2 x 2 matrix Green function G,,,, is the same 
as (3.3) but with the site indexes replaced by bond indexes, that is 

where each sum in ZpI ,pz  
With the equation of motion for G in bond index form we can continue with the 

conventional BCPA method. The average diffusion constant Do is obtained from the 
averaged Green function ((G)). Here (( . . . )) is used to denote averaging over the bond 
disorder. The average Green function is obtained by means of the CPA. The CPA is a self- 
consistent approximation method and as such consists of two stages, first a self-consistent 
effective medium is constructed and the second, the self-consistency is implemented by 
means of an approximation. The construction of the effective medium is as follows. 
Instead of considering the disorder to be a perturbation away from a medium where the 
hopping rate is J, a non-random medium is introduced where the hopping rate is J + B. 
If this is done then G in (3 .5)  must be replaced by the non-random effective medium 
Green function G and W replaced by W - Z (the relation between Z and B is given 

Z p , Z p z  is over all the bonds in the above partitioning. 
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below). Finally, the self-energy 2 (and hence a) is determined self-consistently by 
requiring that when the Green functions equation of motion for G i.e. (3.5) is averaged 
over all disorder configurations we must have ((G)) = G. We summarise the CPA replace- 
ments: 

J - . . ~ = J + o  (3.6a) 
W + W = W - Z  (3.6b) 
G -  G. ( 3 . 6 ~ )  

This construction is well defined and makes no approximations, however in order to 
proceed approximations are necessary. The essential approximation of the CPA is to 
neglect the correlations that arise because of clustering of defect bonds. The implemen- 
tation of the CPA for bond disorder is more complex than for the case of site disorder, 
this is because the bond matrix W (i.e. the matrix whose matrix elements are W,,,) is 
not diagonal whilst the corresponding matrix for site disorder is diagonal. The bond 
matrix W is however diagonal in the particular situation where two conditions are met 
(i) if there are only isolated defects (i.e. no defect clusters) and (ii) if the disjoint 
partitioning is done in such a way that each isolated defect is labelled by a single bond 
of the partitioning i.e. the two sites adjacent to the defect form a bond of the disjoint 
partitioning. If the first condition is met (e.g. very low defect concentrations) the second 
condition can always be met by a suitable choice of the partitioning. 

Thus in the case of only isolated defects Wis bond diagonal and (3.4) gives the 2 x 2 
matrix Wu, , as 

In the BCPA the approximation has to be implemented in two steps. Firstly, the bond 
matrix W (and 2 )  are assumed to be diagonal. However, because of the nature of the 
bond partitioning and the diagonal approximation, symmetries of the lattice can be lost 
when converting from bond indexes back to site indexes. This problem is circumvented 
when it is necessary to convert from the bond indexes back to the site indexes if the 
following correspondence is used 

where the sums on the right-hand side are over all the lattice sites and z is the coordination 
number of the lattice. Using (3.7) the equation of motion for Gu,,  then becomes 

where WP,P = WP,P - 2p,p and 2P,p is the bond diagonal non-random self-energy given 
by 

Furthermore, GPi., satisfies the equation 

P 

(3.10) 

(3.11) 

Equation (3.11) can be converted back to site indexes using (3.8). The resultant equation 
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has the full symmetry of the lattice and hence can be solved by Fourier transforming to 
give 

(3.12) 

Equation (3.9) may be formally solved by introducing the ‘multiple scattering’ T-matrix: 

(3.13) 

where ?can be written in terms of the bond diagonal single bond t-matrix f, where Tand 
Tare given by 

(3.14~)  

(3.14b) 

and where GFl.p2 = GP1.PZ(l - S p l , p l )  i.e. the bond off-diagonal part of G. The 2 x 2 
matrix Tp,p is given by 

T P L P Z  = fPl.Pl(1 - GFo,:,p2 

fp.p = W p . p  - q 7 . p ) ( l  - G p . p W p , p ) r l  

where A G  = Go.o - given by (3.12) with 1 - g = 0 and 1 - g = a 
respectively. 

The effective medium is determined by ((G)) = G. Averaging (3.13) and putting 
((G)) = G requires, for self-consistency, that ((T)) = 0. The principal approximation 
of the CPA is to neglect, when averaging ?.over all configurations, correlations between 
TP+ matrices labelled by different bonds. With this approximation ((T)) = 0 becomes 

((fp.p>) = 0, (3.16) 

which is equivalent to ( ( t (P ) (s ) ) )  = 0. Having obtained the average Green function using 
the BCPA the average single-particle diffusion constant no, is obtained using (2.7) but 
with Gk(s) replaced by Gk(s) .  

We consider the results for the two distributions discussed in the introduction. The 
percolation distribution has total hopping ratesJor 0. This requires that the distribution 
of K be given by 

with Go.o and 

with probability p 

with probability 1 - p 
K =  {-: (3.17) 

Thusp is the concentration of missing bonds. The uniform distribution for the height of 
the energy barriers E is given by 

ifEo - 0 s E s  Eo  + 0 

otherwise 
(3.18) 

where 2 0  is the width of the distribution and Eo its mean. The total hopping rate J + K 
is required to have the uniform barrier distribution, thus (3.18) induces a distribution in 
K where K = J[exp(P(E - E,)) - 11 and (1.4) has been used. 

Prob{E E E + dE} = 
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Using the above formalism for the BCPA and equation (2.7) the following results are 
obtained for the diffusion constant when the disorder has a percolation distribution 

and for the uniform distribution the diffusion constant is 

- 2 sinh(PO( 1 - 2 / 2 ) )  
Do = a z J -  z - 2 sinh(2PO/z) ’ 

(3.19) 

(3.20) 

These results are shown in figure 3 and figure 8. It can be seen that the BCPA correctly 
obtains the diffusion constant vanishing at the percolation threshold pc .  This result 
agrees very well with Monte Carlo results (Kirkpatrick 1971) over the whole range o fp  
except in the immediate region of the threshold where the diffusion is known to be 
anomalous. These results can be compared with the very simplest approximation, the 
virtual crystal approximation (VCA), where the diffusion constant is obtained from (1.3) 
with J replaced by its average, ((J)). For the percolation distribution 

no  = a 2 J ( 1  - p )  (VCA) (3.21) 

and for the uniform distribution 

sinh(PO) Do = a2J  (VCA). 
PO 

(3.22) 

It is clear that the VCA percolation no is a very poor approximation failing to vanish at 
the percolation threshold. This also shows how much better a self-consistent approxi- 
mation can be. 

4. Two-particle BCPA 

It will be shown below that the two-particle static correlations discussed in the intro- 
duction require the evaluation of an average of the form 

((GI,, (s 1 >H’% (s2 ))) 
where G and H refer to two non-interacting particles. Such averages frequently occur 
when calculating transport coefficients in the presence of disorder, and are thus of 
interest beyond the diffusion problem considered here. 

In Q 3 a single particle was considered. There are now two independent particles A 
and B. The hopping rate of particle A has a non-random component J A  and a random 
component K,. The A particles Green function satisfies (3.1). The hopping rate of 
particle B has a non-random component J B  and a random component KB.  The B particles 
Green function also satisfies an equation similar to (3.1) but the particles Green function 
will be denoted and has initial condition 6,,h.  Note this is adifferent initial condition 
to that of (2.12). 

Velicky (1969) has studied this average, and evaluated it using the CPA for the case 
of site disorder. His results cannot be applied directly as the disorder here is bond 
disorder. Thus we consider the application of the CPA to the general two-particle bond 
disorder problem and specialise to the CRW model after obtaining the general result. 

In the presence of disorder and within the CPA we have the general correspondence 
given by equations (3.6) for both the A and B hopping rates and Green functions. 
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The vertex function is related to n by the equation 

f iP l9P2 P I % P Z  = A P 1 4 2  P I . P 2  + 2 A g 1 : $ : G P J , P 4 H P 3 . P 4 n P ? . P 2  P 4 3 P 2 .  (4.7) 
P 3 3 P 4  

Comparing (4.4) and (4.5) shows that fI can be expresed in terms of the single-bond 
f-matrices 

Substituting (4.8) into (4.7) and rearranging results in the following equation for A: 
A P 1 . P 2  p 1 p 2 [ 1 + G ~, * HP 2 %  p 2 (( ip *, * ip 2 .  p 2 ))I = 6 * 6 p I ,p 2 (( ip ip I p 1 )), (4.9) 
which shows that A is bond diagonal. If an object is bond diagonal then the diagonal 
elements (submatrices) can be explicitly represented by a site matrix if the rows and 
columns are suitably labelled. Thus the 4 X 4 submatrix A;:$ can be written in the form 

(4.10) 

where €3 is a direct product, AAB(s1, s2) is the scalar 

AAB = ((lAtB))/(l + 4((tAtB))AGAH) (4.11) 

andtA(sl)andtB(s2)aregiven by(3.15) butwith K-, KA, KBandJ+JA, JBrespectively. 
Also, AH is the same expression as AG but with fi replacing G. Converting (4.5) back 
to site representation gives 

( (G~, ,HJ-~))  = G,, ,HJ-~  + C. C. G I , m 1 H ~ , m 2 f i ~ : ; ~ : G m , . ~ H m 3 . h  (4.12) 
~ 1 . ~ 2  m i E P i  m 3 E p 2  

m 2 E p i  m 4 E p 2  

where 1 E p, g E v ,  j E N and h E t. Using (3.8) enables (4.12) to be written in the form 

b2EiO.U' )  (4.13) 
where each of the sums over b1 and b2 are over the set x = (0, a,,; n = 1, . . . , z }  where 
a,, is a nearest-neighbour lattice vector. An equation similar to (4.13) may be obtained 
for (4.7). Fourier transforming (4.13) and the corresponding equation for (4.7) gives 

((ek(i - 1 + g - h))) = Q k ( j  - 1 + g - h)  

(4 .14~~)  
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(4 .15~)  

and similarly for Q,(s,, s2; r) and i k ( s l ,  s2; r). Using (3.8) and (4.10) and explicit 
expression may be obtained for &(r) which is given by 

&(r) = A A B  2 e-i*rr,:rk-i. = A A B  2 

- r  0 
f'k--,(sl,s2) = 2 exp{-[i(k - A)rl + iAr211K;:0(s~,s2) 

r i  ~2 

- a,, - eika' 6r%-a# + eika'6r,a-o,) .  
h a.a' 

(4.16) 

Equation (4.14b) forms a set of z + 1 simultaneous linear equations and thus can be 
solved to obtain l=I,(r). Substituting &(r) into (4 .14~)  gives ((Qk(r))). Inverse trans- 
forming equation (4.15a) one finally obtains ((Gl-g,oH'-hio)). However, in many cases 
the full ((GH)) matrix is not required. 

5. The correlation factor and BCPA 

In 0 3 we considered the effect of disorder on a simple random walk within the BCPA. In 
this section we return to the CRW and consider the effect of disorder on the diffusion 
constant ED. The CRW diffusion is defined to be of the form Dof0 as discussed in the 
introduction. This form of the diffusion constant splits ia, into a factor Do, which is the 
diffusion constant of a tracer which is independent of the background particles and a 
second factor fo which contains all the many-body dynamics arising from the blocking 
effect of the background particles on the tracer particle. This form of ED is retained even 
in the presence of disorder. This is because the path averages of (1.1) just change from 
all paths of the same length being equally likely (with no disorder), to each path occurring 
with a probability determined by exactly which random bonds occur for that path 
for each particular bond configuration. This change does not affect the form of the 
expression. Thus we have that 

m, = DOfO (5.1) 
is generally valid. This means that 0, can be obtained from the one-particle disorder 
problem, and in particular the BCPA of § 3. In this section we consider the evaluationfo. 

In principle ((fo)) should be determined by averaging the CRW Green function G given 
by equations (2.11). This would then take account of the static-dynamic correlations 
that arise between the particles interactions and the disorder. However we consider here 
a simpler, but non-trivial, approximation. We neglect the static-dynamic correlations 
and consider only the static correlations using the BCPA. This is done by replacing the 
correlation factor by its average i.e. fo-+ ((fo)). As the BCPA is being used we must first 
consider the effective medium by making the replacements (3 .5) ,  thus 

f0 +fO(JA f U A ,  JB  + O B  , e ) .  (5 .2)  
We then approximate ( ( fo) )  by replacing all configuration dependent quantities by their 
averages. In the effective medium the only remaining configuration dependent quantity 
is Cos 8 ,  thus 

((fo)) I - ~ o ( J A  + o A , J B  + O B ,  ((Cos@)). (5.3) 
As oA and U, are already given by the one-particle BCPA we consider ((Cos e)) which is 
given by the average of (2.15). 
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As shown by TKE P,(s; r )  represents the free propagation of a pair of particles. This 
dependence on two particles can be made more explicit as follows. Equation (2.16) can 
be written in the equivalent form 

where (pp , ) ( ,  satisfies the equation 

a 
- ( P / U , ) o  = c [ " J * ( ( P /  d l , )  - (Piu,))  + J B ( ( P / U , + J  - ( P / + O U , ) ) l  a t  (1 

with initial condition 6,,gc7,,h. 
It can be shown (Brak 1989) that for independent particles 

( 5 . 5 )  

( P P , ) O  = ( P / ) O ( U , ) O .  (5.6) 

where ( p J 0  satisfies (2.8) but without the second order moments, similarly for (U,)". As 
the Laplace transform of a product of two functions of time is the convolution of the 
Laplace transform of each function, the Laplace transform of (5.6) 

becomes 

where 
is the Laplace transform of ( u , ) ~  and represents a free 'hole', is given by 

is the Laplace transform of ( p J 0  and is given by (3.2) (J+ J A )  and A, which 

The value of x determines the position of the Bromwich contour of (5.8) and must be 
chosen so that all the poles (in the s' complex plane) of G are to the left of x and all the 
poles of H are to the right of x. 

Thus we see that 

1 
N I  

P k ( s ;  Y) = - exp(-ikl)Pf,,'," 

is related, by a convolution, to a product of two one-particle Green functions 

&;(st. s - s') = G&r)A~ .h ( s  - 3 ' ) .  

When averaging this product over the disorder, section § 4 showed that additional 
correlations arise between the two Green functions. These are what we call static two- 
particle correlations. In  the presence of disorder &- Q ,  P -  P ,  G -  G and H -  H 
and thus we may use the results of § 4 to obtain Qk(s ' ,  s - s'; r )  and hence, through the 
convolution, Pk(s;  r ) .  Furthermore only the linear combination Po(O; 2a) - Po(O; 0) is 
required to determine ( (COSO)) .  This will prove to be a considerable simplification. 
Additional simplifications arise because only the limit k = 0 is required, in particular 
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QO(s f ,  s - s‘; r )  = Qo(s’, s - s’; - r )  and similarly for io and no. Using this enables 
(4.14a, b ) ,  for k = 0 and s = 0, to be written in the form 

Qo(m + n)  = Qo(m + n )  + 2 2 Qo(m + bi )no(b i  + bz)Qo(bz + n)  (5. loa) 
a.a’ bl .b2  

and 

i io(m + n)  = Ao(m + n )  + 1c. C, AO(m + bl )Qo(bl  + bz)fIo(b3 + n)  (5.106) 

where m = m2 - ml  and n = m3 - m,. Equations (5.10) are then conveniently written 
in 7 x 7 matrix form (for the simple cubic lattice) 

a.a’ bl.b2 

Q o  = Q o  + Q o n o Q o  (5. l l a )  

no = A, + A O Q o n o  (5.11b) 

where the matrix elements are (Qo),n,n = Qo(m + n)  (similarly for the other matrices in 
(5.11)) with m and n taken from the set {O,a,; n = 0 , .  . . , z } ,  where a, is a nearest- 
neighbour lattice vector. Equations (5.11) may be solved for Q,, which is given by 

(5.12) 

In order to obtain explicit expressions for the matrix elements of Qo it appears to be 
necessary to invert a 7 X 7 matrix, however it is possible to block diagonalise the matrices 
in (5.12) by a similarity transformation using a unitary matrix (Wolfram and Callaway 
1963t). The block diagonal matrices have two 2 X 2 blocks and a diagonal 3 x 3 ‘p- 
wave’ block. The diagonal elements of the p-wave block are conveniently the linear 
combination required for (2.15). Thus we obtain 

((eo)) = Qo(1  - AoQo)-’. 

Using (4.16) gives Ao(2ax)  - Ao(0) = -41AAB, and hence 

Thus we have that, in conjunction with (5.14), 

((Cos e)) = [ u ( J A  + a*) + (IB + aB)] lim 
ds ’ 
- (Qo(s‘ + r ] ,  r]  - s’; 2a,) 

11-0 i 2ni 

- eo($’ + V ,  Y - s’; 0 ) )  

where r ]  is used to shift the poles off the Bromwich contour. 

(5.14) 

(5.15) 

6. Numerical analysis 

The previous section reduced ((Cos e)) as far as possible and further progress has only 
been made by numerical methods. The computation necessary to obtain a numerical 
result for ((Cos e)) consists of three parts: (i) the BCPA self-energies a, and oB must be 
determined for arbitrary s’; (ii) the two-particle Green function Qo (s‘ + r ] ,  r ]  - s’; Y) 

+ One of the matrix elements has the wrong sign. 
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must be determined for arbitrary s’ and for r = 0, 2a and (iii) the Bromwich contour 
integral must be done numerically. 

The difficulty with the Bromwich integral is the infinite range of integration. This 
can be overcome by a simple trick. The range is first split into two semi-infinite ranges 
0 Each semi-infinite range is then split at an arbitrary point so and the 
integral transformed as follows: 

and 0 + - 

d s  
f(s) ds  = los’ f(s) d s  + lo’”’ f(l/s) -p 

which reduces the range of integration to two finite domains. The numerical integration 
was carried out using the Rombert algorithm (Numerical Recipes 1986). 

Although the BCPA self-energies can be determined analytically fors’ = 0, as was 
required to obtain (3.19) and (3.20), it is not possible for generals’ and thus they must 
be determined numerically. The self-consistent iteration method used is the IATA method 
given by Chen (1973) which is always convergent (Ducastelle 1974) to a unique solution. 

The effective medium two-particle Green function Qo(s’ + q ,  q - s’; r) is more 
difficult to evaluate. It can be written in the form 

1 
Qo(s’ + q ,  q - s’; r )  = -E 

N A [s’ + 7 + (JA + a A ) r A ]  [q  - s‘ + (JB + a B ) r A ] ’  

(6.1) 
This form suggests that Q can be determined numerically by summing over the Brillouin 
zone. This takes more computer time than say evaluating (5.9) by Brillouin zone 
summation because, for r = 2a, the irreducible part of the zone is much larger than that 
required for (5.9). This is not much of a problem if only Q is required, however Q as 
well as the BCPA iteration to determine oA and aB are required for each point in the 
numerical integration of the Bromwich integral which increases the amount of computer 
time required enormously. We can however reduce (6.1) from a product of one-particle 
Green functions to a sum of one-particle Green functions by a partial fraction expansion, 
in particular 

Qo(s’ + 11, q - S’; r) = [ s ’ ( J A  + J B )  

This simple identity will prove to be of considerable help. Equation (6.2) reduces the 
numerical work to the numerical integration (5.15), the BCPA iteration and the evaluation 
of Gr,o and Hr,o for r = 0, a, 2a. 

The lattice Green functions Gr,o(s) (and fi) may be evaluated very efficiently by 
using the complete elliptic functions of the first and second kinds. We consider only the 
simple cubic lattice. There exist several publications on the simple cubic lattice Green 
functions and their relation to elliptic integrals. Elliptic functions possess a considerable 
advantage over Brillouin zone summation in that they can be evaluated numerically 
orders of magnitude quicker (for the same accuracy) using the arithmetic-geometric 
mean algorithm (Bulirsch 1965, Morita and Horiguchi 1973). Earlypublications (Watson 
1939, Joyce 1972, Joyce 1973) only related G to elliptic functions for r = 0 and for fixed 
s or a limited range of s. Later publications (Morita 1971, Morita and Horiguchi 1974) 
used recurrence relations to relate G ,  for arbitrary rands,  to G along certain axes. These 
axis Green functions were expressed in terms of an integral over elliptic functions. The 
integral has to be done numerically. This reduces the numerical work required to 



Correlated random walks with 

0 . 6 -  
+ 0 z -  
E 0 . 4 -  

t -  
0 . 2 -  

+ 
a -  - 

random hopping rates 10315 

, ... 
.. .. - 

..... ' 

- 

- 

Percolation concentration 

Figure 1. Diffusion constant as a function of the 
percolation concentration for a range of particle 
densities, c = 0.1 (chain curve), c = 0.366 (long- 
dashed curve), c = 0.633 (short-dashed curve) 
and c = 0.9 (dotted curve), for J ,  = 1.0. and 
J B  = 5.0. 

L 

i , , , l , , , I , , , 1 , , ,  

obtain G ,  from three numerical integrations (Brillouin zone summations in 3d), to one 
numerical integration and the evaluation of the elliptic functions. 

A final set of papers (Horiguchi and Morita 1975?, Morita 1975) managed to relate 
G for all Y to the Green functions for r = (0 ,  0, 0 ) ,  r = (0 ,  0, 1) and r = (0, 0,2). More 
importantly, these three Green functions where expressed entirely in terms of elliptic 
functions. Without this final result the numerical evaluation of ((Cos e)) would have been 
impractical. If the arithmetic-geometric mean method is carried out using complex 
variables it gives the values of the two elliptic functions only in the region of the real axis 
between their branch points, whilst we require them for the whole complex plane. 
However, in the above mentioned publications analytic continuation expressions are 
provided expressing the elliptic functions in parts of the complex plane in terms of the 
elliptic functions near the real axis. Only one expression is omitted which is required for 
r = (0 ,  0,2)andmaybefoundelsewhere (Bateman 1953). Theimportanceoftheidentity 
(6.2) is now evident. 

7. Results and discussion 

The results of the computations for the percolation distribution are as follows. Figure 1 
shows the diffusion constant 6 = nof0 as a function of the percolation concentration for 
a range of particle densities. The percolation concentration is the concentration of 
missing bonds, thus as the concentration of missing bonds increases the diffusion constant 
decreases until the concentration of missing bonds reaches the percolation threshold 
when there is no longer an infinite cluster of present bonds and the diffusion constant 

+ There are two typing errors in equation (12). 
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Percolation concentration 

Figure 3. Diffusion constant as a function of per- 
colation concentration for the various approxi- 
mations, VCA (long-dashed curve), BCPA without 
two-particle disorder correlations (short-dashed 
curve) and BCPA with two-particle disorder cor- 
relations (dotted curve) (JA = 1.0, JB = 5.0. 
c = 0.9). 

0 0.2 0.4 0.6 0.8 1.0 

Particle density 

Figure 4. Correlation factor as a function of par- 
ticle density for various percolation concen- 
trations, p = 0 (long-dashed curve), p = 0.3 
(dotted curve),p = 0.5 (short-dashed curve) and 
p=0.6(cha incurve) (JA = 1 .0 , JB=5 .0 ) .  

Porticle density 

Figure 5. Diffusion constant as a function of par- 
ticle density for various percolation concen- 
trations, p = 0 (long-dashed curve), p = 0.3 
(dotted curve) ,p  = 0.5 (short-dashed curve) and 
p = 0.6 (chain curve) ( J A  = 1.0, JB = 5.0).  

I / k T  

Figure6. Logarithm of the diffusion constant (uni- 
form distribution) as function of inverse tem- 
perature for various particle densities, c = 0.1 
(chain curve), c = 0.366 (long-dashed curve), c = 
0.633 (short-dashed curve) and c = 0.9 (dotted 
c u r v e ) , f o r Q , = 5 . 0 , Q , = 2 . 0 , E o =  1 .0andO = 
1.0. 
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Figure 7. Correlation factor (uniform distribu- 
tion) as a function of inverse temperature forvari- 
ous particle densities, c = 0.1 (chain curve), 
c = 0.366 (long-dashed curve), c = 0.633 (short- 
dashed curve) and c = 0.9 (dotted curve). Same 
parameters as figure 6. 

, , , , , , , , , , , , , , , ~ , 1 , ,  -6 
0 1 2 3 4 5 

I l k 7  
Figure% Logarithmof the diffusion constant (uni- 
form distribution) as function of inverse tem- 
perature comparing the different approxi- 
mations, vcA(long-dashedcurve), BCPAwithtwo- 
particle disorder correlations (dotted curve), 
BCPA without two-particle disorder correlations 
(short-dashed curve) and the result when there is 
nodisorder(chaincurve),forQ, = 5.O,QB = 5.0, 
EO = 1.0 and 0 = 1.0. 

vanishes. The higher the particle density the lower the initial value (i.e. a t p  = 0) of the 
diffusion constant, which is determined by the factor 1 - c in no and by!,. When c = 0 
(where only the tracer is present) the diffusion constant decreases linearly with per- 
colation concentration, however as c increases thep dependence is no longer linear. The 
non-linearity is more pronounced the greater the particle concentration, as is more 
clearly seen in figure 3 (where c = 0.9). The origin of the deviation from linearity is the 
dependence of the correlation factor on the percolation concentration as is shown in 
figure 2. Thep dependence of the correlation factor arises entirely from thep dependence 
of the average cosine ((Cos e)), which we have seen is attributable to the new static 
correlations which arise when the two-particle Green function is averaged over the 
disorder. Figure 3 compares the results obtained for fi by the various approximations. 
The VCA result is clearly very poor, failing to predict a percolation threshold. The figure 
also shows the effect of the two-particle correlations compared to the one-particle BCPA 
(wherefo = fo). Figure 4 and figure 5 show the dependence of the correlation factor and 
diffusion constant on the particle density for a range of percolation concentrations. The 
correlation factor is again responsible for the departure of the diffusion constants linear 
dependence on particle density. But in this case the dynamic correlations are responsible. 

In the absence of disorder the temperature dependence of the diffusion constant is 
of the same Arrhenius form (1.4) as the hopping rate. This form is retained when the 
disorder has a percolation distribution, however for the uniform distribution of barrier 
heights there is a strong departure from the Arrhenius form. This is shown in figure 6 
where the logarithm of the diffusion constant is plotted against inverse temperature for 
the distribution given in (3.18). The deviation from a straight line shows clearly. For the 
results presented here we have assumed that the tracer and background particles have 
the same barrier height distribution and only differ in their attempt frequencies. If the 
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tracer and background particles have different mean barrier heights then the correlation 
factor already has a temperature dependence due to the hopping rate factors, J A  and .IB 
(see (2.14)) and then acquires an addition temperature dependence from the ((Cos e)) 
factor. 

With both the tracer and the background particles having the same distribution the 
correlation factors temperature dependence, shown in figure 7, is only due to the 
temperature dependence of ((Cos e)). For this particular distribution the effect of the 
disorder is to counteract the reducing effect (on the diffusion constant) of the correlation 
factor, particularly at low temperatures (compared with uo). For figures 6 to 8 Eo = 1 
and 0 = 1. As 0 is reduced all the results tend smoothly to the non-random results (i.e. 
straight lines). Figure 8 compares the results obtained for the diffusion constant by the 
various approximations, showing that the VCA over estimates the diffusion constant. 
The figure also shows clearly the effect of the disorder on the diffusion constant. 

The principle result obtained by this work is the effect of the disorder on the 
correlation factor. In the absence of disorder the ((Cos e)) factor is independent of the 
percolation concentration and independent of the temperature. When the hopping rates 
become random the two-particle static correlations result in a deviation from this simple 
behaviour. When the disorder has a percolation distribution the ((Cos e)) factor, and 
hence the correlation factor, develops a strong dependence on the percolation con- 
centration and vanishes at the percolation threshold. When the energy barrier height 
distribution is uniform the ((Cos 8)) factor develops a clear temperature dependence. It 
can thus be seen that the overall result of the disorder is to couple the dynamic and static 
correlations together, resulting in a disorder dependent correlation factor. 
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